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A job management system is a critical component of a production supercomputing
environment, permitting oversubscribed resources to be shared fairly and effi-
ciently. Job management systems that were originally designed for traditional vec-
tor supercomputers are not appropriate for the distributed-memory parallel
supercomputers that are becoming increasingly important in the high performance
computing industry. Newer job management systems offer new functionality but
do not solve fundamental problems. We address some of the main issues in
resource allocation and job scheduling we have encountered on two parallel com-
puters — a 160-node IBM SP2 and a cluster of 20 high performance workstations
located at the Numerical Aerodynamic Simulation facility. We describe the
requirements for resource allocation and job management that are necessary to
provide a production supercomputing environment on these machines, prioritizing
according to difficulty and importance, and advocating a return to fundamental
issues.

1.0 Intr oduction

Supercomputer centers have historically used batch queuing systems such as NQS
[Kin86] to manage oversubscribed resources and schedule computer time fairly.
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For distributed-memory parallel computers, which are becoming increasingly
important for supercomputing, resource scheduling is significantly more difficult
than it is on single processor or multiprocessor shared memory machines. This is
because parallel applications have more complex scheduling requirements —
resource requirements (e.g. varying the number and type of nodes, different
numbers of processors per node) are more complex; choice of timesharing
method directly affects scheduling strategy; system software, particularly on par-
allel computers formed from a network of workstations, is often oriented
towards scheduling single-node serial applications.

The Numerical Aerodynamic Simulation (NAS) supercomputer facility, located
at NASA Ames Research Center, is actively trying to bring parallel supercom-
puters into its mainstream production environment. Part of that effort involves
finding a robust job management system (JMS). Several job management sys-
tems claim to manage parallel jobs, but the experience so far at NAS is that these
are not suitable for the NAS workload environment. These packages include
NQS [Kin86], DQS [Duk94], DJM [DJM93], Condor [Lit88], LoadLeveler
[IBM94] and LSF [Zho93,Pla94]. Section 3.0 explains some of the fundamental
reasons why job management systems oriented towards serial jobs are not appro-
priate for parallel systems, and addresses important issues in resource manage-
ment and scheduling. Section 4.0 presents a list of requirements for a job
management system targeted towards the NAS parallel systems.

We avoid a discussion of what is arguably the most difficult issue in the real
world of networks of workstations — politics. We leave it to management to
decide how resource availability is determined in the first place and limit JMS
requirements to what we believe is technically feasible in the relatively short
term. Our requirements also do not address issues such as how fast interactive
response must be, how much warning must be given before allowing a worksta-
tion to pull out of a pool, etc.

2.0 The NAS Environment

The Numerical Aerodynamic Simulation division is a pathfinder in high perfor-
mance computing for NASA. This paper focuses on job management require-
ments for two parallel systems at NAS — a 160-node IBM SP2 and a cluster of
20 high performance workstations (SGI Power Challenge, HP9000 and IBM
RS6000/590). The SP2 and the cluster are each viewed as a single parallel com-
puter. The SP2 is a dedicated supercomputer in the traditional sense. The cluster
is intended to model an ad-hoc supercomputer formed from idle workstations sit-
ting on employees desks or dedicated workstations assembled as compute serv-
ers.

The machines are devoted primarily to computational aeroscience applications,
usually in the areas of Computational Fluid Dynamics (CFD) and Structural
Mechanics. These are almost always parallel applications, running on as few as 2
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nodes to as many as the entire machine. By parallel application, we mean a mul-
tiple-instruction-multiple-data (MIMD) program that is designed to run on sev-
eral distributed-memory processors simultaneously. For convenience we will
include one-node serial jobs as a special case. A parallel job is a sequence of
operations requested by a user, of which a parallel application is the main part. In
the following we use “job” and “application” interchangeably. The applications
may be written in a message passing style (such as MPI or PVM) or a data paral-
lel style (using HPF).

Both computers must be able to support a wide range of job sizes, where size is
determined primarily by amount of time, number of nodes, but also by memory
and disk I/O use. During normal working hours (“prime time”), short debugging
jobs should have fast turn around, while allowing larger jobs to run, if possible.
During “non-prime time” hours, large jobs should have priority over smaller
jobs. In addition, users may request exclusive access (“dedicated time”) to a
computer for benchmarking, or for running a grand challenge problem.

A job management system is typically composed of three main parts: aUser
Server for submitting, deleting and inquiring about the status of jobs, aJob
Scheduler for scheduling and queueing jobs, and aResource Manager for allo-
cating, monitoring and enforcing resource allocation and policies. In the NAS
environment,

The User Server should:

• provide one entry point (a virtual queue) to which all jobs are submit-
ted.

• provide information about all queued and running jobs.

The Job Scheduler should:

• schedule jobs according to a predetermined scheduling policy.

• be highly configurable, to accommodate arbitrarily complex and chang-
ing scheduling rules (including dynamic and preemptive resource allo-
cation).

• be able to sustain hardware or system failures - no jobs get lost (restart
or rerun jobs).

The Resource Manager should:

• operate in a heterogeneous multi-computer environment. A single
Resource Manager should span all the systems.

• be able to enforce resource allocation and scheduling policies.

• collect complete job’s accounting information.

In the rest of this paper, we do not distinguish between the User Server, the Job
Scheduler, and the Resource Manager, but combine them all under the label Job
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Management System. We realize that some functionality may reside in the oper-
ating system (for instance checkpointing) and some in the Job Management Sys-
tem. Some parts may be implemented by the vendor. If so, parts that interact with
other piece of software (OS and parallel programming tools), should have a pub-
lic API.

3.0 Serial vs. Parallel Jobs

All job management systems we have encountered were originally designed for
serial jobs, that is, jobs that run on a single processor. We have found two major
problems with these systems.

The first we call the scheduling problem. By scheduling we mean the assignment
of specific resources to a parallel application. Scheduling is done both by the
JMS (i.e., by starting a process on a particular CPU at a particular time) and the
operating system (i.e. timesharing several processes on one CPU). For serial
applications, JMS and OS scheduling are compatible. For parallel applications
they are in general not compatible because of load balance and synchronization
issues that may lead to serious performance degradation.

The second problem is the “parallel aware” problem. The most obvious distin-
guishing feature of a parallel application is that there are multiple processes, yet
most job management systems are aware of and keep track of only one process
(master process). We explain in section 3.2 why this leads to chaos.

3.1 Time sharing, space sharing, and scheduling

One of the great advances in the development of computers was the concept of
timesharing through preemptive multitasking. Several programs can run “simul-
taneously” by using the processor in alternating time slices. Timesharing makes
multi-user interactive use possible and increases processor utilization with only a
small performance penalty, as long as all programs fit in memory. Job manage-
ment systems targeted at serial jobs can make use of operating system-provided
timesharing to run more than one job “simultaneously” or can run jobs sequen-
tially when resource requirements are large (say, for memory).

Unfortunately, parallel jobs are significantly more complicated to schedule to
achieve efficient use of computational resources. One can argue that the most
efficient use of a parallel computer, in terms of raw computational power, is to
treat it as a collection of individual single-processor computers each running
serial jobs. At NAS, however, we are interested in running jobs that cannot be
run on a single node because of their large resource requirements. For instance, a
large memory job cannot fit on a single node, or a CPU intensive job will take
too long to run.

Today’s most promising parallel computers, including the two previously
described, are essentially a collection of high performance workstations, each
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running an independent and full version of the Unix operating system, and each
with independent timesharing. While at first glance it appears that parallel jobs
can be timeshared automatically by the operating system (many JMSs make this
assumption) in practice timesharing does not work for applications in the NAS
workload. The two issues are load balancing and synchronization.

Currently most applications at NAS are statically load balanced, assuming that
each processor is equally fast so that the work should be divided evenly among
them. It is almost impossible, in a timesharing environment, to maintain exact
load balance among nodes. Statically balanced applications run only as fast as
the slowest node, so that even a slight imbalance reduces parallel efficiency dras-
tically. A single unbalanced node can completely ruin the performance of an
entire application. In the near future, we expect to see more dynamically bal-
anced applications, which we discuss in section 3.3.

An obvious “solution” to the load balance problem is to schedule parallel jobs on
top of one another so that all nodes are slowed down equally. From a practical
point of view the loads are never quite balanced, and for many applications this
scheme wouldn’t work even if there were perfect load balance. The reason is that
uncoordinated timesharing causes synchronization and communication delays in
tightly coupled applications. A rare exception is the CM-5 system, which imple-
ments coordinated timesharing across the nodes in a partition and does it quite
well [Thi92].

Among the statically balanced applications are a very important class of tightly
synchronized communication-intensive codes. At NAS these are often CFD
solvers using implicit methods (which have global data dependencies) such as
POVERFLOW [Rya93]. These applications form a large part of the NAS work-
load, and tightly synchronized applications are common in other fields.

The reason these applications cannot be efficiently timeshared is the accumula-
tion of communication delays created by the uncoordinated scheduling of pro-
cesses across the nodes. In tightly synchronized applications, information flows
between nodes as the calculation progresses. Even when there is only nearest-
neighbor communication, information flows from neighbor to neighbor eventu-
ally reaching all nodes. Every time that information flow is disrupted the entire
application slows down. To take a concrete example, imagine that data flows
from node 0 to node 1 to node 2. In a timeshared environment, node 1 may be
running, ready to receive data from node 0, but node 0 may be running another
application, so node 1 waits. When node 1 receives the data, it processes it, at
half speed because of timesharing. When node 1 is ready to send data to node 2,
but node 2 may not be running, so node 1 will have to wait. So node 1 is delayed
by more than just the timesharing going on that node.

For a related but more familiar example, imagine a large household with as many
bathrooms as children. What usually happens when leaving on a vacation is that
a child delays departure by needing to use the restroom. When that child is done,



(

the next child decides its time to go, and so on, so that the net effect is the same
as if there were only one bathroom. Similarly, in the limit of a large number of
timeshared processes, each one is completely serialized and N processors are no
faster than 1. Of course the whole process is stochastic, and dependent on many
factors, but the net effect is always that it is extremely inefficient to indepen-
dently timeshare tightly synchronized parallel processes.

One solution to this problem is to coordinate timesharing across the nodes of a
parallel application, so that all processes of a given application run at the same
time. This is calledgang-scheduling or co-scheduling. Gang-scheduling requires
operating system support, and a scheme for handling communication in progress
(i.e. no messages should be lost when processes are swapped). Although not nec-
essary, it is easier to implement gang scheduling if nodes are divided into fixed-
size partitions, though jobs then do not have flexibility in how many nodes they
run on. Since all nodes in a partition run the same number of processes, the
scheduler does not have to deal with unbalanced scheduling. Gang-scheduling in
fixed-size partitions is an effective way to deal with the timesharing problem and
has been successfully implemented on the CM-5 [Thi92]. It allows a scheduler to
use the same techniques used for scheduling serial jobs. It can be combined with
space sharing, discussed below, to provide very flexible resource allocation.
Unfortunately, gang-scheduling is available on neither the SP2 nor the NAS clus-
ter.

The alternative to time sharing isspace sharing. With space sharing, a parallel
application gets exclusive access to the nodes on which it runs. There is no time
sharing, or if there is timesharing, the competing processes (such as Unix dae-
mons) are mostly inactive. The nodes of a parallel computer are then divided
among several parallel processes. Space sharing allows jobs of arbitrary size, is
compatible with running a full version of Unix, requires no special hardware
support and little software support, but makes scheduling more difficult for the
JMS. The two primary difficulties are the tiling problem, which has to do with
maximizing utilization, and the large job problem, which is that large jobs take
most or all of the computational resources of a machine, preventing any other
jobs from running.

3.2 Understanding “parallel”

Most job management systems were originally designed for serial jobs. While
they may be able to treat “number of nodes” as just another resource, they don’t
really understand theconcept of a paralleljob. Typically the JMS launches a
starter process, or master process, that is responsible for starting the rest of the
parallel application (i.e. worker processes). With this approach, the JMS knows
nothing about the worker processes, except perhaps indirectly, through some-
thing like an indication of load average. Some of the problems with this
approach are:
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• If the master process dies unexpectedly, worker processes may not be
killed when a job finishes (normally or abnormally). Such “orphaned
processes” cause severe performance problems at a minimum and in
some cases (e.g. the SP2) render the machine unusable to others. This is
a critical problem at NAS on both the SP2 and the cluster, and its
importance cannot be overstated.

• There is no way to enforce certain resource limits (e.g. CPU time) or
enforce restrictions on foreign jobs (those not created under supervi-
sion of the JMS) since the JMS has no way of knowing which pro-
cesses it is responsible for.

• Accounting information is recorded only for the master process.

• It is impossible for the job manager to kill a job directly. A parallel
application must be killed by or with the cooperation of the master pro-
cess. When this fails (as it often does) the result is usually orphaned
jobs.

• Some systems may require specific per-process initialization (e.g.
switch adapter mode on the SP2).

In a parallel processing environment, the job management system must either
start or be aware of all processes in a parallel application. There must be a well-
defined interface between the parallel programming environment and the job
management system.

3.3 Dynamic Resources and Scheduling

The parallel applications described so far are statically load balanced and request
a fixed amount of resources for the lifetime of the job. These restrictions can be
relaxed, introducing dynamicism into the picture.

Dynamic load balancing is easily implemented when there are a large number of
independent tasks. Typically, these “embarrassingly parallel” applications are
implemented with manager and worker processes using a producer-consumer
paradigm. If a node becomes slow, for instance due to interference from a time-
shared process, the application can shift work to other nodes, avoiding a
performance penalty. For dynamically load balanced jobs, gang-scheduling is
not necessary. Since these jobs can be easily timeshared, they offer more flexibil-
ity to the job management system. Debugging runs for tightly synchronized
applications have similar ability to be timeshared because performance is not
important. Scheduling for these applications can be performed using a scheme
based on load averages. Loadleveler, Condor, and LSF are oriented towards this
type of scheduling.

The possibility of being able to change resource allocation dynamically is
intriguing, especially in the arena of non-dedicated clusters made up of worksta-
tions sitting on user’s desks. In a non-dedicated cluster, an allocated workstation
may be taken away by its owner, requiring a running application to migrate or
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reduce its number of processes if no other workstation is available. Reciprocally,
as workstations become idle, it may be possible to add additional resources to a
running application. Another important use of dynamic resource allocation is for
fault-tolerance to allow a parallel job to continue after a node failure.

Any dynamically load-balanced application can handle, in principle, dynamic
resource allocation. Statically load-balanced applications can sometimes make
use of dynamic resource allocation, but often with a very high cost when a load
is rebalanced. Effectively making use of dynamically changing resources
requires cooperation between an application and the JMS, including asynchro-
nous notification when resources become available or unavailable. The right way
to do this is currently an active area of research. For example, there is work
underway to define an interface between MPI and a JMS [Gro95] to support
dynamic process management. The Piranha [Car95] adaptive parallelism model
defines afeeder() andretreat() interface to grab and release new resources asyn-
chronously. At a minimum, we anticipate a need for the application to be able to:

• request specific resources, such as number of nodes, amount of time
they will be used for, amount of memory, type of architecture, type of
timesharing (co-scheduled or independent), what type of network is
needed, etc.

• acquire resources asynchronously, through a non-blocking request and
asynchronous notification when some/all resources are available.

• specify whether or not it can release resources, and provide a mecha-
nism for the JMS to take them preemptively or cooperatively.

The most recent version of PVM [PVM94] has internal support for interacting
with a job manager (requests for adding/deleting a host and spawning tasks).
While this is a step in the right direction, it is not general enough to be of use for
NAS. For instance, there is no support for requesting specific resources or
acquiring or releasing them asynchronously. Furthermore, this functionality is
currently supported only by Condor [Lit88], which is tightly integrated with
PVM and therefore not appropriate for other JMSs.

4.0 Requirements

This section lists requirements for a job management system for the NAS paral-
lel systems. The primary purpose of the list is to organize and prioritize NAS
requirements. A secondary purpose is to provide a checklist for evaluating and
comparing existing job management systems. In some cases the requirements
will need operating system or application support. Our list of requirements
addresses the issues described in section 3 and tries to take into account three
main factors:

• System environment: The system environment is an overriding con-
straint. Does the JMS have complete control over all processes on the
system? Are resources dedicated or shared? Do interactive users log
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into the nodes? If interactive users are allowed, do they get priority?
We believe that the job management problem can be made arbitrarily
difficult by choosing a complicated environment. Instead of trying to
solve all problems at once, we choose to address first a simpler environ-
ment for covering the basic needs. While several currently available
packages try to address complicated environments, they were found
inadequate because they don’t address simple problems such as the
“parallel aware” problem. A goal of this paper is to focus attention on
basic requirements for parallel systems.

• Usefulness:Next important is the usefulness of a given requirement.
Some requirements are absolutely necessary. The lack of those makes a
system difficult to manage, and potentially useless. Lack of robust pro-
tection against runaway orphan processes on the SP2 is an example.
Other requirements we anticipate will become necessary to support
more complex parallel computing environments (e.g. networks of non-
dedicated workstations). Other features are interesting, but their useful-
ness is uncertain (job migration between different architectures).

• Difficulty to implement: The last factor we take into consideration is
whether a requirement is easy or difficult to implement. There is little
to gain by requiring something immediately that is difficult to imple-
ment. We would rather that difficult features (for instance checkpoint-
ing, job migration, gang scheduling) be carefully and correctly
implemented.

We decompose the requirements into three phases, taking into account the three
factors just described.Phase I requirements are absolute requirements for a JMS
to be useful to NAS. All requirements included in Phase I exist or can be imple-
mented without any great advances. They assume dedicated, static resources
with space sharing but no timesharing, either co-scheduled or independent.
Phase II requirements relax these assumptions, assuming non-dedicated
resources over which the JMS has a large amount of control.Phase III require-
ments relax the assumptions further, fully integrating all types of parallel appli-
cations and traditional timesharing.

4.1 Phase I Requirements

4.1.1System Model
In phase I, we target a dedicated parallel system where the job manager has com-
plete control. Individual nodes are dedicated to a single parallel application, so
that timesharing is not an issue. The job manager schedules jobs using space
sharing.

A user should be able to run a parallel job by specifying the number of nodes
(fixed throughout the life of the application), a maximum amount of time, and
possibly other resources (e.g., a certain amount of memory, access to a fast file
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system, etc.). Jobs will be scheduled in a “fair” way determined by the system
administrator.

4.1.2Definitions and assumptions

1. The principal resources are dedicated (cpu, memory, and possibly local disks).
If a user gets a node, he/she gets complete control of a node and can assume that
nothing else is competing for that node’s resources (except possibly for a small
amount of OS activity). On most systems, access to the interconnect network and
remote file systems will remain available to other users. This is the only simple
way to make sure that the load is balanced and that communication-intensive
jobs can run efficiently without gang-scheduling. Furthermore, this makes it con-
siderably easier for the JMS to kill a job and clean up afterwards (e.g. every pro-
cess not owned by root may be fair game to kill).

The definition of a job is therefore node-based — the JMS does not need to be
aware of individual processes. When there is gang-scheduling or timesharing
(see phases II and III), the job definition must be process based, which is more
difficult for a JMS to handle. A process-based definition is possible for phase I,
but not required.

2. Resources are static. The size of a parallel job remains fixed for the life of a
job. This avoids the complicated area of interaction between the resource man-
ager and the application.

3. The JMS has complete control over resource allocation. When dealing with a
large number of users, it becomes critical to be able to enforce a predetermined
scheduling policy (usually by preventing, killing or suspending foreign jobs), so
that each user can get a fair chance to run his or her jobs. A serious weakness of
current batch systems is their inability to enforce such a policy.

4. The job may be based on any standard parallel programming model. At NAS,
we support HPF, MPI and PVM. Certain restrictions below don’t allow unre-
stricted use of all PVM features. Note that implementations of MPI, PVM, and
HPF must provide hooks for a JMS or this requirement will be impossible to ful-
fill. Some current implementations (e.g. MPI and HPF on workstation clusters)
do not provide enough information for a JMS to be able to clean up cleanly in a
process-based environment.

5. There is no system-supported fault tolerance, user level checkpointing, or job
migration. If a node dies, the application running on it dies and we assume there
is no way to recover except to kill the rest of the job cleanly. All of these are
extremely difficult issues, especially for parallel jobs, which is why we omit
them from phase I despite their importance. However, if requested by the user, a
job can be restarted from the beginning.
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6. Computational resources are essentially homogeneous. A user application
should be able to assume that equally partitioning work will result in a balanced
load. Special resources may exist on certain nodes if requested by a user. This
applies as well to machines that appear to be homogeneous, but may not be, such
as an SP2 (with different types of nodes).

4.1.3Scheduling policy

A JMS should be able to implement arbitrarily complex scheduling rules. Fair
and efficient scheduling (including site-specific policies and efficient tiling)
require sophisticated rules that can change frequently and can’t be easily cap-
tured by a monolithic set of options. The tiling problem and large job problem
mentioned in section 3.2 are also difficult and have no unique solutions.

At a very minimum, we distinguish between three types of jobs — interactive,
batch and foreign. The JMS should be able to distinguish between these types of
jobs and schedule them appropriately.

• Interactive Jobs

Interactive jobs are those that require fast turn-around (e.g. for debugging) with
their input/output connected to a terminal. Interactive jobs would usually have
small resource requirements, so they can run immediately or in a short period of
time.

• Batch Jobs

Batch jobs require a larger resource allocation. They will usually run overnight,
so that results can be retrieved the next day. Their output is sent to a file rather
than the terminal.

• Foreign Jobs

These jobs are created outside the JMS. The JMS should be able to track, control
and possibly kill foreign jobs according to the current system administration pol-
icy. Since the definition of a job in phase I is node based rather than process
based. The JMS needs only to be able to distinguish between jobs belonging to
the “owner” of a node and all others.

Even these fairly simple categories can involve complicated rules for which a
built-in menu of options is unlikely to be sufficient. For instance, guaranteeing
interactive availability in a space-sharing environment while maintaining high
utilization is a complex task for which we do not have a perfect solution and for
which we would not want a JMS to impose a solution. However, we require the
JMS scheduler to be highly configurable, to accommodate arbitrarily complex
and changing scheduling policies.

This is not to say that the JMS should do nothing. Ideally we envision a script-
able scheduler interface, where the JMS should provide to the script information
such as:

• Requested resources and available resources (see section 4.1.5).
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• job type (interactive, batch, short debugging, etc.).

• job, user and group priority.

• Time of day.

• Current jobs running, current jobs queued, recent history of resource
use by current users.

• Load average (in phases II and III).

We don’t want to rule out the possibility of scheduling done entirely by the JMS
(without a scriptable interface), but we would be surprised if a sufficiently robust
scheduler could be written that could handle all cases. Of course, even a script-
able interface should come with a default scheduler that can handle a lot of inter-
esting cases.

4.1.4Resources

The JMS should be capable of allocating nodes based on requests for certain
resources. In addition to the absolutely essential resources of number of nodes
and wall clock time, these include:

• Number of nodes (currently available).

• Wall clock time.

• Node type (compute, I/O node, big memory, multiprocessor node).

• Disk Usage (local disk, system disk, swap space, etc.).

• Network connections (HiPPI, FDDI, ethernet, etc.).

• System specific resources (e.g. switch adapter mode on the SP2).

4.1.5Resource Limits
The JMS must be able to enforce resource limits. In phase I, we require the JMS
to inform the user why a job is rejected or terminated. Before it kills a job for
exceeding resource limit, the JMS should send a predefined “warning” signal to
the application to give it a chance to abort cleanly. It is, however, the responsibil-
ity of the application to catch this signal and abort cleanly.

The JMS should be able to enforce (both at submission time and when a job is
running) limits on:

• Number of jobs running (user and group limits).

• Number of nodes.

• Type of nodes (I/O, HiPPI, or multiprocessor).

• Wall clock time (phase I) and CPU time per node or application (phases
II and III).

• Disk Usage.

• Dedicated access.

As part of its police duties, a JMS should maintain a clean system. In particular,
it should be able to detect orphaned tasks and foreign jobs and clean them up by
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suspending or killing them. In our experience so far, lack of ability to do this is
the single biggest problem we have encountered. In the phase I dedicated-node
environment, such detection and cleanup should be quite simple to implement
and requires no cooperation from an application.

When appropriate the JMS should support both hard limits and soft limits. A job
is always killed when it exceeds a hard limit. When a job exceeds a soft limit, it
may be killed, but the JMS can decide not to kill it if the resources it is using are
not requested by another process.

4.1.6Accounting
The JMS should collect the following data about each job:

• User name, group and job name.

• Job submission time.

• Job starting and ending time.

• User and system time per node.

• All resources requested and allocated (e.g. number of nodes).

• Job return status (i.e. completed, killed, suspended).

4.1.7Programming System Support

The JMS should support and interact with the following parallel programming
systems.

• MPI

• PVM

• HPF

In phase I, the JMS needs to be aware at least of a master process, but not neces-
sarily the entire application. For phases II and III, we require that all processes of
a parallel application be created by or registered with the JMS. The creation or
registration of process will be done via some well-defined interface between the
JMS and the application.

4.1.8Administration
The administration of the JMS should be centralized. All configuration files and
log files should be maintained in one location. The administrator should be able
to dynamically reconfigure system resources with minimal impact on running
jobs. For instance, it should be possible to add a new system to a pool without
suspending or killing jobs. During a system shutdown, in Phase I and II running
jobs will be lost if they have not been checkpointed by the user. However, if
requested by the user, a job may be restarted from the beginning. For Phase III,
the JMS should be able to checkpoint jobs (relying on OS checkpointing) for
future restart.
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Administrator’s prologue and epilogue scripts should be able to run before and
after each user’s job (e.g. for cleaning /tmp, creating additional accounting, or
performing security functions).

4.1.9User Interface
It is important that the JMS provide to users sufficient and clear information
about the status of system resources and jobs.

• Status of all system resources (idle, reserved, available, down).

• Job status (queued, running, suspended, killed) - Detailed information
should be available to explain to users why a particular job is queued
(for example not enough nodes available), or was killed.

• Information about the consumed and remaining resource available to a
job.

Users should be able to reliably kill their own job.

Interactive jobs should run with standard input and output connected to a termi-
nal. We have also found it useful to be able to “detach” an interactive job after
verifying that it has started correctly [DJM93]. In this case, output must be
logged to a file as well. While we are not requiring this for Phase II, it should be
available for Phase II.

4.2 Phase II requirements

4.2.1System Model
Phase II targets a transitionary architecture, somewhere between the dedicated
parallel computer model of phase I and the network of workstations in phase III.
In phase II, we introduce new requirements that allow for more dynamicism and
fault tolerance, but not with the full range of features in phase III.

The main difference in Phase II is that resources are not necessarily dedicated, so
that the job manager must track individual processes. While this seems like a
small step, it introduces several new requirements and challenges. Some current
JMS systems already track jobs on an individual basis, but do not satisfy the
more important requirements of phase I.

From a user’s point of view, the additional functionality in phase II is the ability
to have time shared pools of nodes for debugging (where performance isn’t
important) or applications that can do dynamic load balancing. In addition, phase
II includes limited support for user level checkpointing (with cooperation from
the user application), with automatic restart and support for dynamic resource
allocation.
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4.2.2Definitions and assumptions

1. In addition to the dedicated resources from phase I, portions of a parallel com-
puter may be set aside for timesharing (independent scheduling).

2. The definition of a parallel job must now be process based, rather than node
based, in order to manage multiple jobs on a node. The JMS should be aware of
all processes associated with parallel jobs (interactive or batch) as well as foreign
jobs. The JMS should be able to do accounting at the process level.

In any case, the JMS should be aware of any jobs created under its supervision,
so that it can kill an entire parallel application (not just a master process) if some-
thing goes wrong (such as a node dies), or if a job exceeds its allocated
resources. Alternatively, if an application declares that it is fault-tolerant, the
JMS needs to take special actions to automatically restart the job from the last
checkpoint or from the start.

4.2.3Dynamic Resource Allocation
The JMS should support dynamic resource allocation (e.g. changes in the num-
ber of nodes of a parallel job). For instance, it should be possible for a job to
request additional resources asynchronously, to release some of its current
resources, and for the JMS to preemptively take resources from a job. Obviously
this requires application level support, and an interface between the parallel pro-
gramming system and the JMS (as described in section 3.3). While few applica-
tions are currently structured to be able to handle dynamicism, allowing it
introduces considerable flexibility in scheduling algorithms to maximize
resource utilization and throughput.

4.2.4User Level Checkpointing
The JMS should provide support for checkpoint/restart at the user level. An
application will have the opportunity to checkpoint its state periodically. The
JMS should have a well-defined interface to facilitate checkpoint-restart.

4.2.5Heterogeneous Environment
The JMS should be able to operate in a heterogeneous environment. In particular,
it should be able to allocate and schedule resources on machines from different
vendors using a single point of contact. Complex scheduling cost analysis and
trade-off between various systems are left for Phase III.

4.2.6Job Inter-dependency
Users should be able to express dependencies between a set of jobs. The JMS
scheduler must be aware of these dependencies while scheduling the jobs. Types
of dependencies are:

• Job State (queued, running, etc.).

• Job Return Status (Success, Failure).

• Job Submission time.
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4.2.7Resource requests and limits, accounting
With timesharing, the following resources become important. The JMS should
be able to allocate and limit resources based on:

• CPU time (per node or total).

• Memory use.

• Swap space.

• Disk usage.

In phase I, only wall clock time was relevant on dedicated nodes. CPU time was
either redundant or misleading. An application waiting on communication would
not use any CPU time but would still prevent any other job from using the dedi-
cated resources. In a timesharing environment, wall clock time has a lesser
meaning for the purposes of accounting, and CPU time is a better measure.

Also with the introduction of timesharing, memory use becomes more important.
It is crucial for most applications (unless performance and efficiency are of no
importance) to avoid swapping. Some applications may be able to use swapping
without performance hit. Avoiding swapping is more important when there is
timesharing because one large process can ruin performance for all the others. A
JMS should be able to schedule jobs so that they do not exceed available mem-
ory and should be able to kill off jobs that exceed their memory request.

In a timesharing environment, it is expected that the primary method of load bal-
ancing used by the JMS will be to schedule according to load average. The JMS
must therefore have some mechanism to determine load average. In certain envi-
ronments, it might be acceptable not to measure load average directly but only to
keep track of the number of processes on a node.

4.3 Phase III Requirements

4.3.1System Model
Phase III targets a fully production system, allowing production parallel applica-
tions to run in an environment that includes workstations sitting on people’s
desks. It requires the solution of difficult problems in computer science before it
can be implemented and certainly requires support at the operating system and
communication library level. Many of the operating system issues are being
addressed by the NOW project at Berkeley [Pat94].

The major developments required for phase III are gang-scheduling and auto-
matic checkpointing, restart, and migration.

4.3.2Definitions and Assumptions

1. Gang scheduling is available. A fixed size partition may be setup to easily
implement gang scheduling.
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Gang scheduling is necessary to allow efficient execution of communication-
intensive applications, combined with reasonable response and throughput. We
have in mind the CM-5 model. It may turn out that gang-scheduling is possible
or efficient only on dedicated parallel computers unless a large time slice is used.
The use of a smaller time slice will require a low latency network. It is not yet
clear whether it can be useful on networks of non-dedicated workstations.

2. There is robust support for checkpointing, restart from checkpoint, and migra-
tion (probably implemented as checkpoint-restart). This is crucial to provide
fault tolerance and to return resources back to interactive workstation users.

4.3.3Scheduling

The JMS may need to understand and interact with the gang-scheduler to be able
to schedule jobs appropriately. For example, gang-scheduling is not necessary
for dynamically balanced jobs.

To make effective use of checkpoint-restart, a JMS will have to reschedule or
migrate an application when a node or other resource becomes unavailable.

4.3.4OS Level Checkpointing
OS level checkpointing of serial jobs is a difficult task. To our knowledge, very
few systems support robust OS checkpointing. Checkpointing of parallel jobs is
even more complicated both because there is always network activity (what
should be done with messages in transit?) and because it can be quite difficult to
capture a well-defined “state” in a loosely synchronous parallel application. OS
level checkpointing clearly involves cooperation between the operating system,
the communication library, and probably the application itself. While OS level
checkpointing is quite difficult, we have found it to be an important element of a
production supercomputing environment of the type found on a “traditional”
supercomputer such as the Cray C90.

Checkpointing is essential for implementing fault tolerance and for migrating
jobs from machines that must be used for some other purpose (e.g., a workstation
owner reclaims her/his workstation or there is a higher priority job).

4.3.5Job Migration
In a non-dedicated cluster environment, it should be possible to migrate a job
from a workstation which has to be returned to its owner. To do this robustly
requires OS level checkpointing, support from the communication layer, and
may require moving data files used by the job. In an heterogeneous environment,
it should be possible to migrate a job through a combination of user-level check-
pointing and restart. Of course this will make sense only for certain types of
applications.
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In order to maximize throughput, the JMS scheduler should be able to migrate
jobs as new resource become available. For instance, removing a large memory
job from a busy system into an empty one.

5.0 Conclusions

A robust job management system is an essential component of a production par-
allel supercomputer. Current job management systems, designed originally for
serial jobs or without awareness of the special requirements for parallel applica-
tions, do not work well in the NAS environment. By providing a detailed list of
requirements for a job management systems, we hope to focus attention on the
basic issues and make sure that these are covered before more adventurous
projects are attempted. We can wait for some time until difficult problems are
solved, but we have immediate needs for a JMS that will solve the simple ones.
Phase I requirements are a minimum to have a usable dedicated system, and
Phase II will be necessary to start supporting a production workload. Phase III
requirements are important for a full production system, comparable to the pro-
duction environment found on traditional vector supercomputers at NAS.

We are working with the designers of the Portable Batch System [PBS95] devel-
oped at NAS and Livermore National Lab to make sure our requirements are
addressed in their design.
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